

Network Monitoring today: why, how, challenges, infrastructures, federations and the Grid

Prepared by Les Cottrell, SLAC, for the Grid Performance Workshop
UCL, May 12-13, 2004
www.slac.stanford.edu/grp/scs/net/talk03/gridperf-may04.ppt

Why (Can't manage what you can't measure)

- Need measurements for both production networks & tesbeds:
 - Planning, setting expectations, policy/funding
 - Trouble-shooting: reliability & performance
 - Problems may not be logical, e.g. most Internet problems caused by operator error (Sci Am Jun'03), most LAN problems are Ethernet duplex, host config, bugs
 - Made hard by transparency, size & rate of change of network
 - A distributed system is one in which I can't get my work done because a computer I never heard of has failed. Butler Lampson
 - Application steering (e.g. Grid data replication)
- E2E performance problem is THE critical user metric

E.g. Policy - trends

S.E. Europe, Russia: catching up

Latin Am., Mid East, China: keeping up India, Africa: 7 yrs behind

India, Africa: falling behind

Important for policy makers

C. Asia, Russia, S.E. Europe,

L. America, M. East, China:

4-5 yrs behind

E.g. Changes in network topology (BGP) result in dramatic change in performance

Methods

- Active Measurement probes:
 - Include: Ping, traceroute, owamp, pathload/abwe, major apps (e.g. bbftp, bbcp, GridFTP...)
 - Typically used for end-to-end testing
 - Injects data into network, can be non-negligible
- Passive tools:
 - Include: SNMP, NetFlow, OCxMon, NetraMet, cflowd, SCNM
 - Typically used at border or inside backbones
 - SNMP heavily used for utilization, errors on LAN & backbones
 - Flows for traffic characterization and intrusion detection
 - Need access to network devices (e.g. routers, taps)
 - · Can generate a lot of data
- Need to put together data from multiple sources
 - Different probes, different source & destinations, networkcentric & end-to-end

Some Challenges for Active monitoring

- Bandwidth used, e.g. iperf etc. & apps
 - Sampling rate (Nyquist's theorem),
 - Relevance to application needs
 - Measure loss to 10% on a path with 1 in 10K loss requires a million pings
- For TCP tools: configuring windows at clients/servers and optimizing windows, streams
- Some lightweight tools (e.g. packet pairs) not effective at >> 1Gbits/s
- Many tools tuned for shared TCP/IP nets not for dedicated circuits
- Simplifying use and understanding for end-user
- Automating problem detection & resolution,

Network Impact

- Heavyweight: iperf, bbcp, bbftp, GridFTP (IEPM-BW, PiPES ...)...
 - Noticeable impact, run infrequently (e.g. hourly), and for short time (e.g. tens of seconds), only small number of sites
 - Need scheduling
 - Close to what applications see
- Lightweight: Ping, traceroute, ABwE etc.
 - E.g. PingER, AMP
 - Can do on demand, no need to set things up in advance (no server to install), no scheduling needed, can involve thousands of sites
- Medium weight (ABwE, pathload etc.)
 - E.g. IEPM-LITE, Scriptroute
 - Needs server/mirror install, low traffic (ABwE 1kbps avg),₇no scheduling

Infrastructures

- Many measurement projects with different emphases, different communities
 - Passive (usually requires network control, used at borders and on backbones, e.g. MICSmon/Netflow, ISP/SNMP, SCNM)
 - Active: amount of network "pollution"
 - Lightweight (PingER, AMP, Surveyor, RIPE ...)
 - Medium weight (PiPES, NWS, IEPM-Lite ...)
 - Heavy weight/hi-perf (IEPM-BW, NTAF
 - End-to-end vs net centric (skitter, macroscopic views)
 - Repetitive (PingER, AMP, IEPM, PiPES, NWS, NTAF, ...)
 - On demand, or non-production (NDT, NIMI, PiPES ...)
 - Dedicated hardware (AMP, RIPE, NDT, PlanetLab ...)
 - Hierarchical (e.g. AMP) vs Full mesh (e.g. PingER)
- For a table comparing 13 public domain infrastructures, see: www.slac.stanford.edu/grp/scs/net/proposals/infra-mon.html

NMI challenges

- Sustaining deployment/operation in multi-agency / international world
- Scaling beyond hundreds of hosts very hard over the long term:
 - Hosts change, upgrade, new OS
 - No control over shared hosts
 - Depend on friendly admin contacts who may be busy, uninterested, have moved etc.
 - Policy/fears at remote site can make dedicated changes painful
 - web100 upgrades not coordinated with Linux upgrades
 - New TCP kernel upgrades not coordinated with OS upgrades
 - Hosts age, become measurement bottleneck
 - Need constant upgrades for dedicated hosts
 - Probes (iperf etc.) change: new features, patches
 - Scheduling to prevent interference for heavyweight tests
- Appropriate security: keeping track of credentials, upgrade/patches, multiple-policies, port blocking

So Recognize

- Unrealistic to think multiple admin domains will all deploy one and the same infrastructure
 - Scaling and interests make unrealistic
- Multiple-domain, multi-infrastructures will be deployed
- Need to tie together heterogeneous collection of monitoring systems
 - Create a federation of existing NMIs
 - Infrastructures work together
 - Share data with peer infrastructures and others using a common set of protocols for describing, exchanging & locating monitoring data (e.g. GGF NMWG)
 - Enables much improved overall view of network using multiple measurement types from multiple sources

MAGGIE Proposal

- Measurement and Analysis for the Global Grid and Internet End-to-end performance
- Contribute to, utilize the GGF NMWG naming hierarchy and the schema definitions for network measurements
- Develop tools to allow sharing
 - Web services based
 - Integrate information from multiple sources
- Brings together several major infrastructure participants: LBNL (NTAP, SCNM), SLAC (IEPM-PingER/BW), Internet2 (PiPES, NDT), NCSC (NIMI), U Delaware, ESnet
- Will work with others, e.g. MonALISA, AMP, UltraLight, PPDG, StarLIght, UltraScienceNet

Federation goals

- Appropriate security
- Interoperable
- Useful for applications, network engineers, scientists & end users
- Easy to deploy & configure
- As un-intrusive as possible
- As accurate & timely as possible
- Identify most useful features of each NMI to improve each NMI faster than working alone

From measurements to the Grid

- Given measurements or the ability to make them, how is that useful to the Grid?
- Grid application needs to place or retrieve data with high performance and robustness
 - Maybe use multiple sites in parallel
 - Some similarities with P2P such as BitTorrent, eDonkey, Kazaa, Gnutella etc. chunking of files
 - But different goals
 - Grid few well-known sites known in advance, high-perf links, does not face legal troubles, free-riding etc. of P2P
- Need to find optimal site(s) to get data from based on expected achievable throughput
 - Can use existing measurements & predictions
 - Can make measurements on demand

Use Existing Measurements

- Need a way to discover "relevant" measurements
 - Between possible pairs or "closely" related pairs
- Need a request protocol/schema
- Need a response schema for results
- GGF NMWG are working on these issues.

On-demand

- Application somehow knows where chunks of data may be found
- Makes measurements of bandwidth from application site to chunk locations
 - Assumes have appropriate servers at chunk locations (e.g. ABwE reflector), or use ubiquitous server (e.g. ping)
- Uses this to choose initial locations to get a complete set of chunks from

Challenges

- Optimal chunk locations may change during transfer (chunk location may become inaccessible, or its performance may drop)
 - So need measurements during transfer
 - This may make it attractive to instrument the application so it can make its own measurements on the data being transferred
 - Need library to simplify modifying each application
- Throughput advantages of multiple parallel site transfers may be no better than multiple parallel streams between a well connected source & destination (may share the same bottleneck)
- Do network measurements relate to file transfer rates?

NMI Challenges:

- Reduce "Wizard gap"
- Applications cross agency AND international funding boundaries (includes Digital Divide)
- Incent multi-disciplinary teams, including people close to scientists, operational teams
 - Make sure what is produced is used, tested in real environment, include deployment in proposals
- Network management research historically underfunded, because it is difficult to get funding bodies to recognize as legitimate networking research, IAB
- Without excellent trouble-shooting capabilities, the Grid vision will fail

More Information

- Some Measurement Infrastructures:
 - CAIDA list: <u>www.caida.org/analysis/performance/measinfra/</u>
 - AMP: <u>amp.nlanr.net/</u>, PMA <u>http://pma..nlanr.net</u>
 - IEPM/PingER home site: www-iepm.slac.stanford.edu/
 - IEPM-BW site: www-iepm.slac.stanford.edu/bw
 - NIMI: <u>ncne.nlanr.net/nimi/</u>
 - RIPE: <u>www.ripe.net</u>/test-traffic/
 - NWS: <u>nws.cs.ucsb.edu/</u>
 - Internet2 PiPES: e2epi.internet2.edu/
- Tools
 - CAIDA measurement taxonomy: <u>www.caida.org/tools/</u>
 - SLAC Network Tools: www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
- Internet research needs:
 - www.ietf.org/internet-drafts/draft-iab-research-funding-00.txt
 - www.slac.stanford.edu/grp/scs/net/talk03/lsn-jun03.ppt

Automatic Step change Detection

- Too many graphs to review each morning!
- Motivated by drop in bandwidth between SLAC &Caltech
 - Started late August 2003
 - Reduced achievable throughput by factor of 5
 - Not noticed until October 2003
 - Caused by faulty routing over commercial network
 - After notifying ISP, it was fixed in 4 hours!
 - See http://www.slac.stanford.edu/grp/scs/net/case/caltech/ for details

Automatic available bandwidth step change detection

- Still developing, evolving from earlier work:
 - Arithmetic weighted moving averages
 - NLANR "Plateau" algorithm work, see http://byerley.cs.waikato.ac.nz/~tonym/papers/event.pdf
- Goals catches important changes, with few false alerts

Plateau algorithm

- Roughly speaking:
 - Has a history buffer to describe past behavior
 - History buffer duration currently 600 mins
 - Plus a trigger buffer of data suggesting a change
 - Trigger buffer duration (evaluating typically 10-60 mins) indicates how long the change has to occur for
 - History mean (μ) and std. dev. (σ) use by trigger selector
 - If new_value outside μ +- sensitivity*σ add to trigger buffer
 - If new_value outside μ +- 2*sensitivity*σ then also an outlier (don't add to stats)
 - Else goes in history buffer
 - Look for big difference in trigger and history buffer means
- Also looking at Principal Component Analysis
 (Crovella et al) of multi variables (e.g. capacity, cross-traffic, RTT ...) which may also help with diurnal changes.

Examples

History duration: 600 mins, trigger duration: 30 mins, threshold 40% sensitivity: 2 With trigger duration: 60 only see one alert, with trigger duration: 10 catch alerts

